Archiv der Kategorie: Serien

Das Sternbild Oktans – Oktant

Herkunft, Mythologie, Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels    

1 Der Name

Der Oktant ist ein nautisches Gerät zur Messung von Winkeln. Sein Name bezieht sich auf den Umfang der angebrachten Skala von 45° (lat. octans = achter Teil/einem Achtel-Kreis). Der Messumfang beträgt aber wegen der Spiegelung im Strahlengang das Doppelte (nämlich 90°). Entsprechend ist die Skala eingeteilt. Über zwei Spiegel, von denen einer beweglich ist, können die Bilder zweier Objekte nebeneinander platziert und so der Abstand zwischen den beiden bestimmt werden. In der Seefahrt konnte auf diese Art und Weise in Verbindung mit einer präzisen Uhr die Höhe der Sonne zur Mittagszeit bestimmt werden; daraus lässt sich der Breitengrad ermitteln, auf dem man sich befindet. Solche Spiegeloktanten ermöglichten also Messungen in einer für die damalige Zeit sensationellen Geschwindigkeit und Genauigkeit. Ende des 18. Jahrhunderts wurde er durch den moderneren Sextanten ersetzt, der auch größere Winkelabstände als 90° messen konnte.

Der Oktant wurde vom englischen Astronomen und Mathematiker John Hadley zusammen mit seinen Brüdern George (1685–1768) und Henry (* 1687) entwickelt und 1731 der Royal Society in London vorgestellt. Zuerst als Hadley-Quadrant bezeichnet, wurde er zum Vorläufer der moderneren Sextanten. Der Messfehler war bei diesen frühen Geräten recht groß, sodass die Position oft nur sehr ungenau bestimmt werden konnte. Oft betrug die Abweichung mehrere Kilometer. Bei den ersten Modellen kam erschwerend dazu, dass sich das Holz im nassen Meeresklima verziehen konnte. Die Probleme bei der Positionsbestimmung in der Ära der Segelschiffe mit diesem Gerät lässt sich sehr gut nachvollziehen, ebenso wie die Technik dahinter. Die ursprünglich rund 50 cm großen Holzinstrumente konnten durch Nutzung von Messing auf ein handlicheres Maß verkleinert werden.

Ebenfalls im Jahr 1731 entwickelte Thomas Godfrey einen Oktanten in den Amerikanischen Kolonien.

Es ist übrigens noch gar nicht so lange her, dass die alleinige Methode der Ortsbestimmung auf hoher See die Ermittlung der Höhe eines Gestirns über dem Horizont war bzw. die Abstände der Gestirne untereinander. Da der Oktant nur Winkel bis zu 90° messen kann − also bei der Längenbestimmung durch die sog. Monddistanzen nur eingeschränkt brauchbar war − wurde er im späten 18. und frühen 19. Jahrhundert durch den Sextanten verdrängt.

Nach wie vor sind diese Methoden neben GPS, also satellitengestützten Systemen, in der Seefahrt im Einsatz.

Und so funktioniert der Oktant

Der bewegliche Arm (die Alhidade) wird auf 0° gestellt, anschließend wird durch das Peilloch der Horizont anvisiert. Er muss zweimal sichtbar sein – das untere Glas ist nur zur Hälfte verspiegelt, sodass man auf der linken Seite geradeaus sieht und rechts daneben das Bild des oberen Spiegels sieht. Dann wird die Alhidade und mit ihr der zweite Spiegel so verstellt, dass man das Bild des Sterns, dessen Höhe man messen will, auf einer Höhe mit dem Horizont sieht. Für die Bestimmung der Sonnenhöhe gibt es einschwenkbare Filter, um das Licht zu dämpfen und den kurzzeitigen Blick in die Sonne zu ermöglichen, ohne gleich Augenschäden davonzutragen.

Darum beherzigen und beachten Sie folgende Warnung:

„Nehmen Sie niemals die Sonne ohne eingeschwenkte Filter ins Besteck, um keine Augenschäden zu riskieren!“

Auf der Gradskala am unteren Ende des Sextanten können Sie dann die Höhe des Gestirns über dem Horizont ablesen.

Bild 01: Oktant aus Metall mit Nonius und Feineinstellung

2 Das Sternbild

Octans     Genitiv: Octantis     Abk.: Oct     dt.: Oktant

Auch das Sternbild Oktant wurde als eines von 14 Sternbildern in den Jahren 1751 / 1752 von dem französischen Astronomen Nicolas Louis de Lacaille eingeführt. Es soll an den Oktanten erinnern, ein Instrument, das von den Seefahrern seiner Zeit zur Positionsbestimmung und zur Messung von Winkelabständen genutzt wurde und noch bis weit ins 19. Jahrhundert in der Navigation zur Bestimmung der geografischen Breite in Gebrauch war. Auf Johann Elert Bode´s Uranographia von 1801 erschien de Lacailles neues Sternbild unter dem Namen „Octans Nautica“.

Bild 02: Oktant in J. E. Bode´s Uranographia von 1801

Der Oktant ist das südlichste Sternbild schlechthin, denn der Himmelssüdpol liegt in seinen Grenzen. Leider gibt es hier keinen hellen Stern, der analog zum Polaris in der Kleinen Bärin diesen wichtigen Punkt markieren könnte. Der nächstgelegene, heute ca. 1° vom südlichen Himmelspol entfernte und mit bloßem Auge sichtbare Stern ist der nur 5m45 helle σ Octantis, der neuerdings auch Polaris Australis genannt wird.

Dies ist aber, dank der Erdachsenpräzession, nur eine vorübergehende Rolle, denn der Pol verlagert sich in ca. 27.000 Jahren einmal rundum auf einer angenäherten Kreisbahn, deren Mittelpunkt der Ekliptikpol bildet. Im Jahr 1870 stand Sigma Octantis dem Himmelssüdpol am nächsten. Den hellsten Polastern werden die Bewohner der Südhalbkugel zwischen den Jahren 5000 und 11.000 haben. Dann wandert der Pol nämlich durch die Sternbilder Carina und Vela. Somit wird in den Jahren 8000 bis 9000 das „Falsche Kreuz“ ein sehr markanter Wegweiser zum Himmelssüdpol sein.

Einen Anhaltspunkt für die Position des Himmelspols erhält man, wenn man die geographische Breite seines Beobachtungsstandortes kennt. Der Pol steht so viele Grad über dem Horizont, wie es der Gradzahl des Breitenkreises des Beobachtungsstandortes entspricht. Dies gilt sowohl für den Himmelssüdpol als auch für den -nordpol.

Eine weitere grobe Aufsuchhilfe ist das Sternbild Dorado (Schwertfisch). Verlängert man den Bogen der Hauptsterne links an der GMW vorbei nach Süden, trifft man auf den Himmelssüdpol, der sich dann vor den figurbildenden Sternen des Oktanten befindet.

Zudem bildet der südliche Himmelspol mit den beiden Magellan´schen Wolken ein angenähertes gleichseitiges Dreieck.

Da dieses Sternbild mit seinen Grenzen den Himmelssüdpol umschließt, erstreckt es sich in Rektaszension von 0h00m00s bis 24h00m00s, also um einen Punkt, aber in Deklination reicht es von diesem Punkt, also von -90°00´00“, bis hinauf auf -74°18´14“ und beinhaltet dabei 291 Quadratgrad. Somit ist dieses Sternbild erst ab dem Äquator vollständig sichtbar.

Seine Nachbarsternbilder sind Inder, Pfau, Paradiesvogel, Chamäleon, Tafelberg, Kleine Wasserschlange und Tukan.

Meteorströme sind aus dieser Region keine bekannt.

2.1 Die Sterne

ν Oct ist mit 3m76 der hellste Stern im Sternbild Oktant. Es handelt sich um einen spektroskopischen Doppelstern mit einer Periode von 2,9 Jahren. Die Hauptkomponente ist ein orange leuchtender Unterriese der Spektralklasse K0III mit einer Oberflächentemperatur von 4860 K in rund 70 Lichtjahren Entfernung. Seine Position ist α 21h41m28,8s / δ -77°23´24,2“. Dieser  Stern hat seinen Kernwasserstoff verbraucht und sich ausgedehnt. Der sekundäre Stern ist wahrscheinlich ein roter Zwerg von sehr geringer Masse. Im Jahr 2009 wurde angenommen, dass das System einen Exoplaneten enthält, was auf Störungen in der Orbitalperiode basiert. Eine prograde Lösung wurde schnell ausgeschlossen, aber eine retrograde Lösung bleibt eine Möglichkeit. Allerdings könnten die Variationen auch darauf zurückzuführen sein, dass der sekundäre Stern selbst ein enger Doppelstern ist. Die Bildung eines Planeten in einem solchen System wäre aufgrund von dynamischen Störungen nämlich schwierig.

β Oct ist 140 Lichtjahre entfernt. Es handelt sich um einen 4m13 weiß leuchtenden Stern der Spektralklasse A9 IV mit einer Oberflächentemperatur von 8000 K auf der Position α 22h46m03,5s / δ -81°22´53,8“. Beta Octantis ist ein wahrscheinliches astrometrisch binäres Sternensystem und liegt etwa 149 Lichtjahre von der Sonne entfernt. Es bewegt sich mit einer Radialgeschwindigkeit von +19 km / s von der Sonne weg.

δ Oct steht auf der Position α 14h26m55,2s / δ -83°40´04,4“, ist ein 4m31 heller orange leuchtender Stern der Spektralklasse K2III mit einer Oberflächentemperatur von 4300 K. Er ist schon 4,3 Milliarden Jahre alt, also fast so alt wie unsere Sonne und ist von ihr 299 Lichtjahre entfernt.

θ Oct ist ein 4m78 heller, orange leuchtender Riesenstern der Spektralklasse K3III mit einer Oberflächentemperatur von 4200 K auf der Position α 00h01m35,7s / δ -77°03´56,6“ in einer Distanz zu uns von 217 Lichtjahren.

σ Oct steht dem Himmelssüdpol von den mit bloßem Auge sichtbaren Sternen am nächsten. Als Aufsuchhilfe ist Sigma Octantis jedoch nicht besonders geeignet, weil er mit nur 5m45 viel zu unauffällig und heutzutage nur unter sehr guten Bedingungen direkt zu sehen ist. Trotzdem wird er auch Polaris Australis genannt. Er ist ein weißer Unterriese der Spektralklasse F0III in 270 Lichtjahren Entfernung.

γ1 Oct ist ein einzelner, gelb leuchtender Stern mit einer scheinbaren visuellen Helligkeit  von 5m1, was bedeutet, dass er gerade hell genug ist, um für das bloße Auge schwach sichtbar zu sein. Dabei befindet sich dieser Stern etwa 265 Lichtjahre von der Sonne entfernt. Es bewegt sich mit einer Radialgeschwindigkeit von +15,4 km / s von der Sonne weg. γ1Octantis ist ein roter, weiterentwickelter G-Typ-Riesenstern mit einer Sternklassifikation von G7 III und einer Photosphärentemperatur von 5150 K. Er erzeugt seine Energie durch Heliumfusion in seinem Kern. Der Stern hat eine geschätzte 1,81fache Sonnenmasse und hat sich auf den 11fachen Sonnenradius ausgedehnt.

α Oct ist, obwohl er von Johann Bayer in seinem Sternatlas Uranometria als “Alpha” Stern bezeichnet wird, nicht der hellste Stern im Sternbild – dieser Titel gehört Nü Octantis. Alpha steht auf der Position α 21h04m43,1s / δ -77°01´25,6“, hat eine visuell scheinbare Gesamtgröße von 5m15 und ist ein spektroskopischer Doppelstern, der aus zwei Riesensternen der Spektraltypen F4III und F5III mit Photosphärentemperaturen um 6300 K besteht. Diese umkreisen sich mit einer Periode von etwas mehr als 9 Tagen. Das Paar wurde als bedeckungsveränderliches Doppelsternsystem vom Typ Beta Lyrae klassifiziert. Es ist eine helle Röntgenquelle mit einer Leuchtkraft von 22,78 × 1029 erg s-1 und steht in einer Raumtiefe von 148 Lichtjahren.

2.2 Deep Sky Objekte

NGC 2573 ist eine Balkenspiralgalaxie vom Hubble-Typ SBc auf der Position RA 01h41m53,2s /  Dec -89°20´03“. Sie ist nur 13m4 hell und hat eine Winkelausdehnung von 1,9´ x 0,7´ bei einer Entfernung von 128,2 Millionen Lichtjahren. Sie wird auch Polarissima Australis genannt und wurde am 29. März 1837 vom britischen Astronomen John Herschel entdeckt. Er notierte: “Neb Polarissima Australis. Schwach, rund, allmählich ein wenig heller in der Mitte. Fast auf halbem Weg zwischen einem Stern der 10. Größe südlich davon und einem kleinen Dreieck der Sterne 11., 13. und 13. Magnitude im Norden.” Diese Galaxie zeigt sich als kleiner Lichtfleck mit geringer Oberflächenhelligkeit, der von Ost nach West leicht gestreckt ist.

NGC 2573A und NGC 2573B/PGC 70533  sind ein wechselwirkendes oder sogar kollidierendes Galaxienpaar auf der Position RA 23h07m32.6s / Dec -89°07’00 “. Sie bringen ein gemeinsames Licht von nur 14m6 bei einer Winkelausdehnung von 1,7 ‘x 0,6´.
NGC 2573A und NGC 2573B sind keine echten NGC-Objekte, sondern im Volksmund so genannt, weil sie im allgemeinen Bereich von NGC 2573 liegen. PGC70680 ist 115 Millionen Lichtjahre von uns entfernt und hat einen wahren Durchmesser von 70.000 Lichtjahren. Sie ist vom Hubble-Typ eine SBb und zeigt sich als ein  länglicher Nebelfleck in Nord-Südrichtung. PGC70533 ist eine Galaxie vom Typ IBm pec fast in Kantenstellung und somit auch nur ein kleiner, dünner Lichtstreifen mit einer Ausrichtung quer zu PGC 70680. Bei fast gleicher Raumtiefe hat diese Galaxie einen wahren Durchmesser von 50.000 Lichtjahren.

NBGC 6438 / PGC 61793 und NGC 6438A bilden ein interagierendes Galaxienpaar, das im Okular einen sehr ungewöhnlichen Anblick bietet. John Herschel entdeckte es am 2. Juni 1835. Es befindet sich auf der Position RA 18h22m15,9s / Dec -85°24´06“. Sie erscheinen als ein kleines, rundes, mit 11m7 mäßig helles Leuchten mit einem schwachen, diffusen, länglichen, bogenförmigen Glühen an seiner östlichen Seite. Zusammen haben sie eine Winkelausdehnung von 1,6´x 1,4´. Das runde Gebilde ist NGC 6438; das schwache bogenförmige Leuchten kommt von NGC 6438A. In der Galaxie NGC 6438 ist ein Nukleus zu sehen und mit indirektem Sehen leicht zur Mitte aufhellt. Das bogenförmige Leuchten von NGC 6438A ist bei Einsatz spezieller Filter sichtbar. Es tritt dort auf, wo NGC 6438A mit ihrem Begleiter kollidiert.

Bild 03: Galaxienpaar NGC 6438 und NGC 6438A

NGC 7098 ist eine mit 11m3 leuchtende Galaxie vom Hubble-Typ (R)SAB(rs)a auf der Position RA 21h44m16.4s /  Dec -75°06’43”. Sie hat eine Winkelausdehnung von  4.1’ x 2.6’. John Herschel entdeckte NGC 7098 am 22. September 1835. Er notierte: “pF; R; erstes vg, das psbM; in einem Feld mit vielen großen Sternen und stark gepunktet.“ Diese Galaxie zeigt sich als ziemlich schwach leuchtend, hat einen breiteren helleren Kern, der leicht balkenförmig erscheint. Ein indirektes Sehen zeigt einen sehr schwachen äußeren Halo mit leicht ungleichmäßiger Helligkeit. In der gleichen Richtung liegen mehrere Hintergrundgalaxien, die aber nur den Großteleskopen oder Fotografien zugänglich sind.

Bild 04: NGC 7098

2.3 Sonstiges

Quellenangaben der Abbildungen

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Der Beitrag Das Sternbild Oktans – Oktant erschien zuerst auf Sternwarte Lübeck.

Das Sternbild Pyxis – Schiffskompass

Herkunft, Mythologie, Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

Was die Symplegaden in antiker Vorzeit nicht geschafft haben, ist vom französischen Astronomen Nicolas Louis de Lacaille 1752 bei seiner Kartographierung des Südhimmels erreicht worden – die Zerlegung der Argo Navis in mehrere ihrer Hauptbestandteile. Noch im 2. Jahrhundert unserer Zeit benannte Claudius Ptolemäus einzelne Sterne dieses großen südlichen Sternbildes nach Details der Argo, so unter anderem ein Grüppchen oberhalb der Segel als „Malus“, den Mast. Als nordwestlichstes Teil wurde dieser obere Mast samt Mastkorb zum heutigen Sternbild Pyxis Nautica, dem Schiffskompass. Hierbei handelt es sich jedoch nicht um einen Ausrüstungsgegenstand der Argo sondern um eines der neun wissenschaftlichen Geräte, die Lacaille mit der 1756 veröffentlichten „Planisphere des Etoiles Australes“ am Himmel verewigt hat. Bei der bildlichen Darstellung orientierte man sich am Aussehen der zur damaligen Zeit gebräuchlichen „Schiffsbüchsen“, lateinisch Pyxis Nautica, wie sie von den seefahrenden Navigatoren zur Tarnung genannt wurden. Die antiken Griechen, hier die mythischen Helden, kannten den Magnetkompass noch nicht. Sie navigierten noch überwiegend rein nautisch nach dem Stand der Gestirne einschließlich der Sonne. Hierbei wurde auch der Mast bzw. Mastkorb als Hilfsmittel mit einbezogen. Somit landete der „moderne“ Kompass an dieser exponierten Stelle. Johann Ehlert Bode fügte in seine Uranographia in das gleiche Areal noch die damals sehr wichtigen Geräte Log und Leine als Sternbild „Lochium Funis“ mit ein, die aber spätestens 1930 der Neuordnung durch die IAU zum Opfer fielen.

Zu den Ursprüngen des Kompasses habe ich sinngemäß nachfolgendes gefunden:

Die Erkenntnis, dass sich längliche, stiftartige Splitter von Magneteisenstein in Flüssigkeit schwimmend in die Nord-Süd-Richtung drehen, war in Europa seit der späten griechischen Antike  und in China seit der Zeit der Streitenden Reiche, zwischen 475 v. Chr. und 221 v. Chr. bekannt. Ob überhaupt und wenn ja in wie weit diese Erkenntnis schon zur Navigation genutzt wurde, ist nicht belegt. Die seriösen Studien zum Ursprung des Kompasses von Julius Klaproth und L. de Saussure führen zu dem Ergebnis, dass die chinesischen Navigatoren den nassen Kompass bereits um die Jahrtausendwende kannten. Die Chinesen benutzten seit dem 11. Jahrhundert eine schwimmende, nasse Kompassnadel, die Südweiser genannt wurde. Tatsächlich zeigt der chinesische Kompass nicht nach Norden, sondern nach Süden. Im Laufe der Zeit entwickelten sich daraus spezielle Kompassformen mit einer Einteilung in 24, 32, 48 oder 64 Striche bzw. Himmelsrichtungen. Ende des 11. Jahrhunderts empfahl Shen Kuo (1031–1095) in seinem Hauptwerk einen Kompass mit Einteilung in 24 Richtungen; kurz nach seinem Tod waren solche Kompasse tatsächlich im Gebrauch.

Die Matrosen des östlichen Mittelmeeres haben spätestens zur Zeit der Kreuzzüge vom nassen Kompass erfahren und ihn optimiert. Da er seinem Besitzer jedoch einerseits große Vorteile gegenüber der Konkurrenz brachte, andererseits aber scheinbar mit verbotenen magischen Kräften funktionierte, wurde dieses Wissen möglichst geheim gehalten. Als Pyxis (alt-/neugriechisch: πυξίς, pyxís) bezeichnet man unter anderem eine elfenbeinerne, metallene, hölzerne oder steinerne Büchse zur Aufbewahrung von Schmuckstücken oder anderen wertvollen Kleinutensilien. Dieser Begriff wurde auch zur Tarnung der Kompasse verwendet.

In Europa beschrieb der englische Gelehrte Alexander Neckam 1187 den nassen Kompass als eine magnetisierte schwimmende Nadel, die unter Seeleuten in Gebrauch war. Auch in einer kirchenkritischen Schrift des französischen Mönches Hugues de Bercy wurde die schwimmende Magnetnadel um 1190 erwähnt.

Auf der Arabischen Halbinsel wurde der Kompass nicht erfunden, da die arabischen Seeleute um die Jahrtausendwende über gute astronomische Kenntnisse verfügten und dank der gleichmäßigen Winde in ihrer Weltregion gut navigieren konnten. Im arabischen Raum lässt sich der nasse Kompass erst etwa einhundert Jahre nach Alexander Neckams Erwähnung nachweisen. Die erste schriftliche Erwähnung einer trocken, auf einem Stift spielenden Magnetnadel findet sich im Epistola de magnete von 1269, geschrieben von Petrus Peregrinus de Maricourt, womit der noch heute benutzte trockene Kompass erfunden war.

Der Kompass vom italienischen compasso „Zirkel, Magnetnadel“ abgeleitet, ist ein Instrument zur Bestimmung einer fest vorgegebenen Richtung, z. B. Himmelsrichtung, Navigations-Kurs, Peilrichtung. Ursprünglich ergänzte der Kompass in der Schifffahrt andere Methoden der Navigation, zum Beispiel anhand von Sonne, Sternen und Landmarken, Strömungen, Wellengang und Wassertiefe. Die älteste Ausführung des Kompasses ist die Kimme, die das Anpeilen des Polarsterns bei klarer Nacht erlaubt.

Das klassische Gerät ist der Magnetkompass, der anhand des Erdmagnetfeldes die Bestimmung der magnetischen Nordrichtung und daraus aller anderen Himmelsrichtungen erlaubt. Andere Ausführungen sind elektronische Kompasse auf Basis von Hall-Sensoren oder Fluxgate-Magnetometern; mit Letzteren kann der Betrag und die Richtung des Erdmagnetfeldes auf ein 1/100.000 des Absolutwerts genau bestimmt werden. Ganz ohne Ausnutzung des Erdmagnetfeldes arbeiten Kreiselkompasse, deren Wirkungsweise auf der Erdrotation beruht. Die Richtungsmessung erfolgt bezüglich der geografischen Nord-Süd-Richtung anstatt zu den Magnetpolen,  die von diesen rund 2000 Kilometer abweichen. Es gibt auch Kreiselinstrumente ohne Richtungsbezug (freie Kreisel wie den Kurskreisel), die allerdings periodisch nachgestellt werden müssen. Ebenfalls ohne Magnetfeld kommen Sonnenkompasse aus. Ein Kompass mit Peilvorrichtung wird auch Bussole genannt. Meist wird dieser Begriff in der Vermessungstechnik für Präzisions-Peilkompasse verwendet, vor allem in Österreich und Italien wird aber auch der einfache Wander– oder Marschkompass so genannt.

Bild 05: Wanderkompass mit ölgedämpfter Nadel

Der Kompass wurde ständig in Funktion und Anwendungsmöglichkeit weiterentwickelt und ist aus der heutigen Wissenschaft und Wirtschaft nicht mehr wegzudenken. Auch nur annähernd dies hier aufzählen zu wollen würde den Sinn und Rahmen dieses Kapitels sprengen.

2 Das Sternbild

Pyxis     Genitiv: Pyxidis     Abk.: Pyx     dt.: Kompass

Das Sternbild Pyxis befindet sich südlich der Wasserschlange und breitet sich in RA von 8h26m43s bis 9h27m37s aus und reicht in Dec von -37°17´31“ bis auf -17°24´41“. Hierbei bedeckt es eine Fläche von 221 Quadratgrad und ist ab 63° nördlicher Breite südwärts sichtbar. Die Nachbarsternbilder sind im Sinne des Sonnenlaufs Hydra, Puppis, Vela und Antlia. Das Sternbild kulminiert Anfang Februar um Mitternacht.

2.1 Die Sterne

α Pyx ist ein 3m68 heller blauweißer Riesenstern der Spektralklasse B2III. Er hat mehr als 10 Sonnenmassen und eine 10.000fache Leuchtkraft bei einer Oberflächentemperatur von 24.300 K. Sein Licht kommt von der Position α 08h43m35,5s / δ -33°11´10,9“ und aus einer Entfernung von rund 845 Lichtjahren. Solche Sterne enden für gewöhnlich in einer Supernova. Er markiert im Sternbild den Drehpunkt der Kompassnadel.

β Pyx ist ein Doppelstern auf der Position α 08h40m06,1s / δ -35°18´30“, wobei ein 3m95 heller, gelber Überriese der Spektralklasse G7Ib-II von einem nur 12m5 lichtschwachen Stern im Abstand von 12,6“ auf dem Positionswinkel 118° begleitet wird. Sein Licht kommt von einer 5600 K heißen Sternoberfläche über eine Distanz von 420 Lichtjahren zu uns und markiert im Sternbild das kürzere südliche Ende der Kompassnadel.

γ Pyx hat eine Helligkeit von 4m03 die von der 4270 K heißen Oberfläche eines orange leuchtenden Riesenstern der Spektralklasse K3III über 209 Lichtjahre Distanz zu uns kommt. Seine Position ist α 08h50m31,9s / δ -27°42´35,4“ und markiert die Spitze der Kompassnadel.

T Pyx ist eine im Minimum 12m0 lichtschwache, rekurrierende (wiederkehrende) Nova in einer Entfernung von 3260 Lichtjahren. In den Jahren 1890, 1902, 1920, 1944 und 1966 erfolgten Helligkeitsausbrüche bis auf 6,5 mag. Am 14. April 2011 wurde der Beginn eines neuen Ausbruches entdeckt auf der Position α 09h04m41s / δ -32°22´47“.

Bei dem System handelt es sich um einen Doppelstern bestehend aus einem weißen Zwerg und einem nahen stellaren Begleiter. Bedingt durch die Nähe fällt Material vom Begleiter auf die Oberfläche des weißen Zwergs. Wird durch den ansteigenden Druck und die Temperatur der nukleare Brennpunkt von Wasserstoff erreicht, gibt es einen Nova-Ausbruch. Der weiße Zwerg selbst bleibt dabei unversehrt und das Material vom Begleiter sammelt sich erneut auf seiner Oberfläche an, was dann nach einigen Jahren zu einem erneuten Ausbruch führt.

Der Namensteil „T“ folgt den Regeln zur Benennung veränderlicher Sterne (s. POLARIS 101) und besagt, dass T Pyxidis der dritte veränderliche Stern ist, der im Sternbild Schiffskompass (lateinisch Pyxis) entdeckt wurde.

2.2 Deep Sky Objekte

NGC 2613 ist eine Spiralgalaxie vom Typ SAB(rs)cd und liegt auf der Position RA 08h33m22,8s / Dec -22°58´25,2“. Die Galaxie hat eine Winkelausdehnung von 7,2′ × 1,8′, eine scheinbare Helligkeit von 10m4 und eine Flächenhelligkeit von 12m6; sie wurde am 20. November 1784 von Wilhelm Herschel entdeckt.

Bild 06: NGC 2613 Galaxie Typ SAB(rs)cd – 1,5m Danish Tel. ESO/IDA/Danish 1.5 m/R. Gendler, J.-E. Ovaldsen, C. Thöne and C. Féron

NGC 2627 ist ein 8m4 heller offener Sternhaufen auf der Position RA 08h37m15s / Dec -29°57´01“. Zum Haufen gehören 40 Sterne. Trümpler klassifizierte ihn als Typ III2m. Bei einer Entfernung zu unserer Milchstraße von 6.630 Lichtjahren erscheint er uns unter einer Winkelauflösung von 9 Bogenminuten. Der deutsch-britische Astronom William Herschel entdeckte diesen Sternhaufen am 3. März 1793.

Bild 07: NGC 2627 Digitized Sky Survey von Donald Pelletier unter Creative Commons Lizenz CC BY-SA 4.0

NGC 2658 ist ein offener Sternhaufen im Sternbild Kompass und hat eine Winkelausdehnung von 10,0′ und eine scheinbare Helligkeit von 9,2 mag. Er wurde am 28. Mai 1826 von James Dunlop entdeckt. Seine Koordinaten für das Äquinoktium 2000.0 lauten RA 08h43m27,3s und  Dec -32°39′22″. Er gehört zur Trümpler-Klassifikation II2m, hat eine ermittelte absolute Helligkeit von -2.33 mag und leuchtet aus einer Entfernung von 6.600 Lichtjahren. Von Lübeck aus ist NGC 2658 so gut wie nicht zu beobachten, da er so weit südlich liegt, dass er für dortige Beobachter niemals mehr als 3° über den Horizont steigen wird. Andere Bezeichnungen für dieses Objekt sind Mel 90 und Cr 195. 

Bild 08: NGC 2658 Digitized Sky Survey von Donald Pelletier unter Creative Commons Lizenz CC BY-SA 4.0

NGC 2818, ein planetarischer Nebel in der südwestlichen Ecke des Sternbildes nahe zur Grenze zum Segel auf der Position RA 09h16m06,1s / Dec -36°37´37“, hat eine Winkelausdehnung von 1,4 x 1,4 Bogenminuten und eine scheinbare Helligkeit von 8,2 mag. Er liegt 10.400 Lichtjahre tief im Raum. In gleicher Sichtlinie liegt ein offener Sternhaufen. NGC 2818 wurde am 28. Mai 1826 vom schottischen Astronomen James Dunlop entdeckt.

Bild 09: NGC 2818 planetarischer Nebel – Hubble Space Telescope

2.3 Sonstiges

Bild 10: Sternbild Pyxis (IAU in Zusammenarbeit mit Sky and Telescope)

Literaturhinweise

  • Die großen Sternbilder                                 I. Ridpath
  • Was Sternbilder erzählen                           G. Cornelius
  • Sternbilder von A bis Z                                 A. Rükl

Quellenangaben der Abbildungen

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Der Beitrag Das Sternbild Pyxis – Schiffskompass erschien zuerst auf Sternwarte Lübeck.

Das Sternbild Vela – Die Segel

Herkunft – Mythologie – Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

Das Sternbild Vela ist ein neuzeitliches Sternbild mit antiken Wurzeln. Es gehörte ursprünglich zu dem größten Sternbild des Südens, der Argo Navis oder dem Schiff der Argonauten. Hierzu gehörten auch die heutigen Sternbilder Carina = Schiffskiel, Puppis = Achterschiff und Pyxis = Schiffskompass. Der Schiffskompass liegt in einem Bereich, der früher als der Mast des Schiffes (Malus) mit dem Mastkorb angesehen wurde. Zu antiken Zeiten wurde auch vom Mastkorb aus die Navigation unterstützt.

Das Sternbild Argo Navis belegte am Himmel eine Fläche von mehr als 1670 Quadratgrad bei einer Ausdehnung in Rektaszension von 06h02m0s bis 11h20m37s und in Deklination von -75°41´02“ bis -11°15´08“. In der Antike war das Sternbild nur südlich des 32sten Breitengrades in seiner gesamten Größe zu beobachten, das entspricht der afrikanischen Mittelmeerküste, dem alten Palästina, dem antiken Mesopotamien sowie dem antiken Persien oberhalb des Persischen Golfs. Wäre dieses Sternbild noch heute anerkannt, wäre es größer als Hydra.

Argo Navis war griechischen Beobachtern seit langem bekannt, von denen angenommen wird, dass sie dieses Sternbild um 1000 v. Chr. aus der ägyptischen Mythologie und Sternkunde übernommen haben. Zum Beispiel identifizierte Plutarch Argo mit der ägyptischen Konstellation, die das “Boot des Osiris” genannt wurde. Obwohl einige Wissenschaftler einen sumerischen Ursprung zum Gilgamesch-Epos theoretisierten, wird diese Hypothese abgelehnt, da es keine schriftlichen Beweise dafür gibt, dass die Sumerer oder andere mesopotamische Kulturen diese Sterne zu Konstellationen zusammengefasst haben. Einige Zeit später wurde die Konstellation speziell mit dem antiken griechischen Mythos von Iason und den Argonauten identifiziert.

Iason, Thronerbe von Iolkos, wird von seinem Großvater ausgesandt, das Goldene Vlies aus Kolchis von König Aietes zurück zu holen. Hierzu baut Iason mit Argos ein fünfzigruderiges Schiff, die Argo. Athene selbst fügt diesem Schiff ein sprechendes Holzstück aus der Eiche des Orakels von Dodona ein. Iason versammelt alle bedeutenden griechischen Helden um sich und besteht mit ihnen, den Argonauten, vielfältige Abenteuer. In Kolchis verweigert Aietes die Herausgabe des Goldenen Vlies und stellt Iason zur Bedingung mehrere unlösbare Aufgaben. Medeia, die Tochter des Aietes, die mit Zauberkünsten sehr vertraut ist, verliebt sich in Iason, hilft ihm scheinbar Unmögliches zu vollbringen und fährt mit ihm, nach dem Raub des Goldenen Vlieses und nach mehreren mit der Argo überstandenen Abenteuern, nach Iolkos.

Eigenartigerweise wurde das Schiff immer, selbst auf antiken Abbildungen ohne Bug und mit dem Heck voraus, in Richtung der Wanderung der Sterne über den Nachthimmel, dargestellt. Entweder ließen die alten Kartographen den Bug in einer Wolke oder zwischen den Symplegaden verschwinden.  Schon ein Fragment des Arat, ein griechischer Historiker im dritten Jahrhundert lebend, beschrieb sein scheinbar rückwärtiges Fortschreiten entlang des Nachthimmels, „Sternforward Argo von dem Canis Major Schwanz gezogen wird, denn sie kein gewöhnlicher Kurs ist, aber rückwärts gedreht kommt sie … “. In seinem Almagest beschrieb Claudius Ptolemäus Argo Navis als den Teil der Milchstraße zwischen Canis Major und Centaurus besetzend; und er benannte einzelne Sterne nach solchen Details wie das “kleine Schild”, das “Steuerruder” oder den “Masthalter” und umfassend das “Sternornament”, das sich bis in das 19. Jahrhundert in kartographischen Darstellungen in himmlischen Atlanten fortsetzte. Die Sterne Miaplacidus und Canopus bildeten den Schiffsboden. Im Coelum Stellarum Christianum von Julius Schiller wurde es umgedeutet zur Arche Noah.

Bild 01: Sternbild Argo Navis nach J. Hevelius 1690
Bild 02: Sternbild Argo im Jahr 1922

In der neueren Zeit wurde das Sternbild Argo Navis aufgrund seiner enormen Größe für wissenschaftliche Zwecke als unhandlich angesehen. Schon 1763 veröffentlichte der französische Astronom Nicolas Louis de Lacaille in seinem Coelum Australe Stelliferum, dass in Argo Navis mit dem bloßen Auge mehr als hundertsechzig Sterne deutlich sichtbar  waren und löste die Konstellation auf. Er bezeichnete die neuen Abschnitte als „Argus in Carina“, „Argus in Puppi“  und „Argus in Velis“. Lacaille ersetzte die Bezeichnungen von Bayer durch neue, die den stellaren Größen näher kamen, benutzte jedoch nur eine einzige griechische Buchstabenfolge; Carina erhielt z. B. α, β und ε, Vela γ und δ, Puppis ζ und so weiter, wobei er Pyxis scheinbar vergessen oder sogar absichtlich außer Beachtung gelassen hat.
Die endgültige Auflösung und Abschaffung von Argo Navis wurde von Sir John Herschel 1841 und 1844 vorgeschlagen, aber die alte Konstellation blieb parallel zu ihren von Lacaille eingeführten Bestandteilen bis ins 20. Jahrhundert im Gebrauch. Im Jahr 1922 erhielt sie zusammen mit den anderen Konstellationen eine dreibuchstabige Abkürzung: Arg. Als die IAU im Jahr 1930 die 88 modernen Konstellationen definierte und Carina, Puppis, Vela und Pyxis formell einführte, wurde die alte Konstellation Schiff Argo endgültig gestrichen. Somit ist  das Schiff Argo das einzige Sternbild der 48 von Ptolemäus in seinem Almagest aufgelisteten Konstellationen, welches offiziell nicht mehr als  zusammengehörig anerkannt ist.

In den POLARIS-Ausgaben 22 und 23 habe ich die Sternbilder Carina und Puppis entsprechend meinen damaligen noch recht bescheidenen Möglichkeiten beschrieben. Hier folgt nun der dritte Teil der alten Argo, die Segel. Die lateinische Bezeichnung „Vela“ steht für die Mehrzahl.

2 Das Sternbild

Vela     Genitiv: Velorum     Abk.: Vel     dt.: Segel (die)

Dieses ausgedehnte Sternbild erstreckt sich nördlich von Carina am Südhimmel in RA von 08h03m27s bis 11h05m50s und in Dec von -57°10´28“ bis auf -37°09´36“ und hat dabei einen Flächeninhalt von 500 Quadratgrad. Es ist vom südlichen Mitteleuropa und Südeuropa lediglich der nördliche Teil dieses Sternbildes sichtbar. Erst ab 33° nördlicher Breite südwärts ist es vollständig zu sehen. Seine Nachbarsternbilder sind von Nord im Uhrzeigersinn Luftpumpe, Schiffskompass, Achterdeck, Schiffskiel und Zentaur. Durch das Sternbild zieht sich das sternreiche Band der Milchstraße. Daher findet man in den Segeln mehrere offene Sternhaufen, einen Kugelsternhaufen und einen Planetarischen Nebel. Vier seiner Sterne sind auffallend hell. Die Sterne δ und κ Velorum zusammen mit ι und ε Carinae werden manchmal mit dem Kreuz des Südens verwechselt. Diese Sterngruppe wird daher auch als „Falsches Kreuz des Südens“ bezeichnet. Das falsche Kreuz ist größer und der rechte Balkenstern hängt, während er beim echten Kreuz hoch steht.

Aus der Sternbildregion Vela-Puppis ist der vom 1. bis 15. Dezember auftretende Meteorstrom der Puppiden-Veliden mit einem Maximum um den 7. Dezember bekannt. Der Radiant liegt bei RA 08:12 / Dec -45°. Die Zenithal-Hourly-Rate liegt bei 10 und die Geschwindigkeit bei 40 km/s.

Bild 03: Das Sternbild Vela – Segel

2.1 Die Sterne

γ Vel ist mit einer Gesamthelligkeit von 1m8 der hellste Stern in den Segeln mit dem Eigennamen Sulhail al Muhlif. Er ist ein etwa 1000 Lichtjahre entferntes Mehrfachsystem auf der Position α 08h09m30s / δ -47°20´. Die Komponenten A (auch γ2 Velorum) und B (auch γ1 Velorum) sind bei einem Winkelabstand von 41,2“ schon im Feldstecher leicht zu trennen. A ist seinerseits ein enger Doppelstern, der den hellsten bekannten „Wolf-Rayet-Stern“ enthält. Dieser hier ist ein 30.000 K heißer Riese mit 15tausendfacher Sonnenleuchtkraft, einer sehr schnell expandierenden Gashülle und einer Umlaufperiode von 78 ½ Tagen. Eine weitere Komponente mit der Bezeichnung P wurde durch Beobachtungen im Infraroten mittels adaptiver Optik in einem Abstand von 4,7″ bei einem Positionswinkel von 13° entdeckt. Sie ist wahrscheinlich ein physischer Begleiter und ihre Daten passen zu einem K4-Stern leicht oberhalb der Hauptreihe. Die Komponente B, γ1 Velorum, wurde mit B1 IV klassifiziert und hat eine Helligkeit von 4m2. Sie wurde mittels Speckle-Interferometrie am Kitt Peak und Cerro Tololo aufgelöst als Doppelstern mit den Komponenten Ba und Bb.

δ Vel ist ein Vierfachsternsystem mit dem Eigennamen Koo She in 80 Lichtjahren Entfernung. Es besteht aus den Paaren δ Velorum A und B sowie δ Velorum C und D. Infolge der Präzessionsbewegung der Erde wird δ Velorum in 7.000 Jahren den südlichen Polarstern darstellen. Der hellste der vier Sterne, Delta Velorum A, ist ein weißer Hauptreihenstern mit einer Helligkeit von 1m9. Sein Begleiter Delta Velorum B hat eine Helligkeit von ca. 5m0 und liegt von Komponente A 2,6 Bogensekunden entfernt. Das zweite Doppelsystem ist 69 Bogensekunden entfernt. Es besteht aus dem Stern 11. Größe Delta Velorum C und dem Stern 13. Größe Delta Velorum D, die ihrerseits einen Abstand von 6 Bogensekunden voneinander haben.

κ Vel ist ein spektroskopischer Doppelstern in 540 Lichtjahren Entfernung. Die 2m7 helle Hauptkomponente wird in 116,65 Tagen umkreist. Der arabische Name Markab bedeutet „Fahrzeug“. Den gleichen Namen tragen die Sterne α Pegasi und k Puppis.

µ Vel ist ein Doppelsternsystem bestehend aus einem 2m7 hellen gelben Riesen mit  den Eigennamen Alherem oder Peregrini und einem sonnenähnlichen gelben Zwergstern.

λ Vel ist ein 570 Lichtjahre entfernter veränderlicher Stern, der seine Helligkeit ohne erkennbare Periodizität von 2m14 nach 2m3 verändert. Er ist ein orangefarbener Riesenstern mit dem 200fachen Durchmesser und der 10.000fachen Leuchtkraft unserer Sonne. Seine Oberflächentemperatur beträgt etwa 4.000 Kelvin. Er trägt verschiedene Namen, nämlich Suhail, Alsuhail und Suhail al Wazn.

φ Vel hat den Eigennamen Tseen Ke, ist 3m5 hell, gehört der Spektralklasse B5Ib an und befindet sich auf der Position α 09h56m51,7s / δ -54°34´4,1“ in 1590 Lichtjahren Entfernung.

2.2 Deep Sky Objekte

NGC 3132 ist ein 9m2 heller planetarischer Nebel, der wegen seines Aussehens auch als südlicher Ringnebel oder Eight-Burst-Nebula bezeichnet wird. Er hat eine Ausdehnung von derzeit 0,5 Lichtjahren, wird von dem 9m9 hellen Zentralstern HD 87892 zum Leuchten angeregt und befindet sich auf der Position RA 10h07m02s / Dec -40°26´12“ in 2000 (5000) Lichtjahren Entfernung nahe der Grenze zum Sternbild Antlia (Luftpumpe). In seinem Inneren soll sich ein Doppelstern befinden. Er wurde am 2. März 1835 von John Herschel entdeckt.

Bild 04: NGC 3132 Der südliche Ringnebel – HST

NGC 3201 ist die Bezeichnung eines Kugelsternhaufens. Dieser hat einen Durchmesser von 18,2′, eine scheinbare Helligkeit von 6m8  und eine integrierte Spektralklasse F 6. Er steht auf der Position RA 10h17m36,8s / Dec -46°24´40,4” und sein Licht braucht bis zu uns 16.300 Jahre. Seine Randbereiche können bereits mit einem mittleren Amateurteleskop in Einzelsterne aufgelöst werden. James Dunlop entdeckte diesen Kugelsternhaufen am 28. Mai 1826.

Bild 05: NGC 3201 Kugelsternhaufen  – ESO-MPG 2,2m Teleskop

IC 2391,  ein galaktischer offener Sternhaufen, auch als Omicron Velorum Cluster bekannt, ist etwa 500 Lichtjahre von der Erde entfernt und hat einen Durchmesser von 9 Lichtjahren entsprechend 50´. Das Objekt hat eine scheinbare Helligkeit von 2m5 und beinhaltet über 30 Sterne. IC 2391 kann mit bloßem Auge gesehen werden. Der Sternhaufen ist mit rund 50 Millionen Jahren etwa so alt wie der Sternhaufen IC 2602. Die Position von IC2391 ist RA  08h40m32s / Dec -53°02´0“. Er steht in der Nähe des Sterns ο Velorum. Er wurde 964 von dem persischen Astronomen Abd ar-Rahman as-Sufi erstmals beschrieben. IC2391 wurde außerdem 1751von Nicolas Louis de Lacaille von Südafrika aus gefunden und 1752 als Lac II 5 katalogisiert. In einem Prismenfernglas bietet er einen sehr schönen Anblick.

Bild 06: IC 2391 offener Sternhaufen in Vela –  Roberto Mura

IC 2395 ist ein offener Sternhaufen in 3.000 Lichtjahren Entfernung. Aufgrund seiner größeren Entfernung ist er nicht so auffällig wie IC 2391, ist aber ein interessantes Objekt für kleinere Teleskope. Er befindet sich auf der Position RA 08h42m31s / Dec -48°06´0“ und hat eine Winkelausdehnung von 8´ entsprechend 15 – 26 Lichtjahren. Seine 45 Sterne sind zwischen 6 und 18 Millionen Jahre alt und erzeugen eine Haufenhelligkeit von 4m6. Der hellste Stern ist ein 5m53 heller B0-Typ. Lacaille entdeckte diesen offenen Sternhaufen am 17. Februar 1752.

IC 2602 ist ein offener Sternhaufen vom Typ II3m. Er hat eine scheinbare Helligkeit von 1m9 und einen Durchmesser von 100 Bogenminuten. Er ist rund 480 Lichtjahre vom Sonnensystem entfernt, hat einen Durchmesser von etwa 10 Lichtjahren und beinhaltet ca. 60 obere Hauptreihensterne. Das Alter des Haufens wird auf 50 Millionen Jahre geschätzt. Seine Position ist RA 10h42m56,5s / Dec -64°23´39“. Dieser Sternenhaufen wird wegen seiner Ähnlichkeit mit den Plejaden im Stier auch unter der Bezeichnung „Südliche Plejaden“ geführt. Entdeckt wurde das Objekt 1751 von Nicolas-Louis de Lacaille.

Bild 07: IC 2602 offener Sternhaufen  Südliche Plejaden – Roberto Mura

NGC2547 ist ein offener Sternhaufen mit noch sehr jungen Mitgliedern. Seine Position ist: RA 08h10m12s / Dec -49°12´0“ nahe der östlichen Grenze zum Sternbild Puppis. Er hat bei etwa 40 Mitgliedssternen eine Winkelausdehnung von 209 Bogensekunden und sein Gesamtlicht von 4m7 braucht 1960 Jahre bis zu uns. N. L. de Lacaille entdeckte ihn 1751/1752 während seines Aufenthaltes am Kap der guten Hoffnung.

Bild 08: Großfeldaufnahme NGC 2547 und Umgebung – MPG/ESO

SNR Vela ist die Bezeichnung für die filamentigen Nebelreste einer Supernova, die sich vor 11.000-12.300 Jahren in 815 Lichtjahren Entfernung im Sternbild Vela ereignet hat. Aus dem Vorgängerstern ist durch die Supernova zweierlei entstanden: Zum Einen der Vela-Pulsar mit der Bezeichnung PSR B0833-45, ein Neutronenstern von nur 10-15 Kilometer Durchmesser und einer Rotationsperiode von 11mal pro Sekunde. Er wurde von Astronomen der University of Sydney im Jahr 1968 als erster direkter Beweis dafür beobachtet, dass Supernovae  Neutronensterne bilden. Zum Anderen bildet das von der Supernova in den Raum geschleuderte Gas den Vela-Nebel, der eine Ausdehnung von 8 Winkelgrad oder rund 100 Lichtjahren hat. Zu dem Supernovaüberrest gehört auch der Bleistiftnebel mit der eigenen Bezeichnung NGC 2736 (Pencil-Nebula). Das Zentrum befindet sich in RA bei 08h35m20,6s und in Dec bei -45°10´35,2“ und das ganze Objekt hat eine scheinbare Flächenhelligkeit von 12m0.

Der Supernovaüberrest überlappt sich scheinbar mit dem von Puppis A, welcher aber vierfach weiter entfernt ist. Tatsächlich ist der Vela SNR einer der Erde am nächsten gelegenen Supernovaüberreste –und stellt möglicherweise auch die 1998 entdeckte Röntgenquelle RX J0852.0-4622 dar, die sich wie Puppis A mit dem Erscheinungsbild des Vela-Supernovaüberrestes überlappt. Der Vela-SNR gehört zu den hellsten Himmelserscheinungen im Röntgenbereich.

2.3 Sonstiges

Literaturhinweise

  • Die großen Sternbilder                                            I. Ridpath
  • Lexikon der griech. u. röm. Mythologie          H. Hunger
  • Internet z.B. Wikipedia                                            div. Autoren
  • Internet z.B. Astrowiki                                             div. Autoren
  • POLARIS 22 und 23                                                   E. – G. Bröckels
  • Astronomical Journal 137-3358                        B. D. Mason et al.
  • Sternbilder von A bis Z                                             A. Rükl

Quellenangaben der Abbildungen

  • Bild 01: from Wikimedia Commons, the free media repository,  gemeinfrei aus Firmamentum Sobiescianum sive Uranographia 1690 Johannes Hevelius
  • Bild 02: created by Torsten Bronger nach de Lacaille Puppis, Vela, Carina, Pyxis 2000 07 07; geändert 2014 E.-Günter Bröckels (Sternbildgrenzen rot eingefärbt)
  • Bild 03: from Wikimedia Commons, the free media repository; created by Torsten Bronger 2003; geändert 2014 E.-Günter Bröckels (Sternbildgrenzen rot eingefärbt;  grüne Hilfslinien erweitert; „Falsches Kreuz“ rot eingezeichnet und beschriftet; nachfolgende Objekte positioniert und beschriftet: NGC´s 2547, 2736, 3132, 3201, 3228;  IC 2395;  PSR B0833-45; SNR (roter Ring))
  • Bild 04: Wikiwand  Hubble Heritage Team (STScl/AURA/NASA/ESA 1998)  public domain
  • Bild 05: Wikipedia cretiv commons.org/licenses/by/4.0 ESO-https://www.eso.org/public/images/ngc3201/
  • Bild 06: From Wikimedia Commons, the free media repository; the copyright holder of this work, Roberto Mura 07/2007, release this work into the public  domain. This applies worldwide.
  • Bild 07: Roberto Mura 02/07/2007 in Wikipedia auf Italienisch – Übertragen aus it. wikipedia nach Commons durch Jacopo Werther,  gemeinfrei
  • Bild 08: ESO Wide Field Imager am MPG/ESO 2,2m Teleskope La Silla Chile; https://es.wiktionary.org/wiki/ Archivo:Wide-field_view_of_the_open_star cluster_NGC_2547.jpg
  • Bild 09: Bill Blair´s Vela Supernova Remnant Page,  Foto by Royal Observatory´s Super COSMOS H-alpha Survey project Vela SNR
  • Bild 10: Bill Blair´s Vela Supernova Remnant Page,  Foto by Bert Van Dokelaar, geändert 2017 E.-Günter Bröckels (rechts gedreht 90°)

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Der Beitrag Das Sternbild Vela – Die Segel erschien zuerst auf Sternwarte Lübeck.