Archiv der Kategorie: 2022

Astronomische Highlights im Oktober 2022

Mond & Planeten

Auch im Oktober zieht der Mond seine Bahnen durch die Planeten. Erwähnenswert sind hier die Begegnungen mit dem Saturn am 5.10., die Begegnung mit dem Jupiter am 8.10 sowie die Begegnung mit dem Mars am 15.10.

Vom 4.10. bis zum 19.10 ist der Merkur wieder am Morgenhimmel zu erspähen. Die beste Sichtbarkeit wird in den Tagen vom 10.10. bis zum 16.10. erreicht. Am 10.10. geht der Merkur kurz vor 6:00Uhr auf und wird noch bei einer Höhe von etwas mehr als 10° sichtbar sein. Bis zum 16.10. verspäten sich die Aufgänge nur um etwa 20min. Der Merkur geht im Osten kurz vor der Sonne auf.

Am Abendhimmel zeigen sich unsere großen Gasplaneten Jupiter uns Saturn und später auch unser Nachbarplanet Mars.

Der Abendhimmel am 15. Oktober 2022 um 22:30 Uhr mit Mond, Mars, Uranus, Jupiter und Saturn.

Meteorströme (Sternschnuppen)

In der Nacht vom 8. auf den 9.10 erreicht der Meteorstrom der Draconiden seinen Höhepunkt. Sein Radiant entspringt im Sternbild Drache am nordwestlichen Himmel. Die Fallrate des Stroms ist sehr unterschiedlich. Von einigen wenigen Sternschnuppen pro Stunde im niedrigen einstelligen Bereich bis zu 300 Sternschnuppen pro Stunde, wie zuletzt 2011, ist alles möglich. Überwiegend bleibt dieser Meteorstrom jedoch unscheinbar.

Ein weiterer Meterostrom hat am 21.10. sein Maximum. Es handelt sich um den Strom der Orioniden. Auch hier variiert die Fallrate, jedoch kann hier mit etwa 20 Meteoren pro Stunde gerechnete werden. Die Orioniden sind mit bis zu 65 km/s recht schnelle Objekte. Beim Ursprung des Stroms deutet alles auf den Halleyschen Kometen hin. Die beste Beobachtbarkeit ist von ca. Mitternacht bis ca. 5:00Uhr morgens. Der Radiant liegt etwas nordöstlich von Beteigeuze im Sternbild Orion.

Sonne

Das Highlight schlechthin im Oktober, bzw. im gesamten Jahr 2022 ist die von Deutschland aus sichtbare partielle Sonnenfinsternis am 25.10.

ACHTUNG!!! Schauen Sie niemals ohne geeigneten Augenschutz in die Sonne. Irreparable Augenschäden und Blindheit sind die Folgen!

Die Finsternis beginnt für den Standort Lübeck um 11:08Uhr und erreicht ihr Maximum um 12:10Uhr. Der Bedeckungsgrad beträgt dann 30,9%. Das Ende der Finsternis ist um 13:14Uhr erreicht.

Die Sternwarte Lübeck steht Ihnen an diesem Tag mit geeignetem Equipment zur Verfügung, damit Sie dieses astronomische Ereignis ohne Gefahr für Ihre Augen beobachten können.           

Ablauf der Finsternis (für den Standort Lübeck):

11:08 Uhr Beginn der Finsternis
11:30 Uhr
11:45 Uhr
12:00 Uhr
12:10 Uhr Maximum
12:30 Uhr
12:45 Uhr
13:00 Uhr
13:15 Uhr Ende der Finsternis

*Alle Bilder mit Stellarium erstellt

Der Beitrag Astronomische Highlights im Oktober 2022 erschien zuerst auf Sternwarte Lübeck.

Bundesweiter Tag der Astronomie am 1. Oktober 2022

Thema: Faszinierende Mondwelten

Am Tag der Astronomie bieten Sternwarten, Planetarien, und Forschungsinstitute in ganz Deutschland zahlreiche Aktivitäten an, damit jeder und jede einmal den Sternhimmel live erleben kann.

Erleben Sie von 10:00 – 23:00 Uhr einen Tag Astronomie zum Anfassen in der neuen Sternwarte Lübeck!

Der Beobachtungsturm ist ab 10:00 bis zum Ende der Veranstalung geöffnet.

Außerdem stehen viele Teleskope und Modelle in unseren Räumen und auf dem Außengelände auch ebenerdig bereit.

Falls Sie überlegen, sich selber ein Teleskop anzuschaffen, können Sie sich von uns die verschiedenen Bauformen und ihre Vor- und Nachteile sowie Anwendungsgebiete erklären lassen.

Natürlich dürfen Sie alle unsere Teleskope nicht nur ansehen sondern auch benutzen!

Tagsüber unsere Instrumente für einen sicheren Blick auf unsere Sonne bereit.

Abends können wir – passend zum diesjährigen Thema “faszinierende Mondwelten” – nicht nur unseren Mond, sondern auch Monde anderer Planeten unseres Sonnensystems beobachten. Wenn der Himmel klar ist!

Bitte denken Sie daran, dass es im Oktober schon recht kalt werden kann. Also Pullover und Jacken mitbringen.

Es erwarten Sie außerdem tagsüber viele Mitmachaktionen und ein buntes Programm an Kurzvorträgen für die ganze Familie.

Kinder haben Spaß beim Starten unserer Wasserrakete und  einer Rallye mit kleinen Preisen.

Unser Space Café ist ab 10:00 Uhr geöffnet und verwöhnt Sie mit Softgetränken, Kaffee und Kuchen in den neuen Räumen der Sternwarte (solange der Vorrat reicht). Das Space Café ist auch Start und Ziel der Kinderralley.

Der Eintritt zur Veranstaltung ist frei und ohne Voranmeldung möglich, wir freuen uns über eine Spende.

Kurzvorträge

UhrzeitThemaZielgruppe
12 – 12:30Das Weltall über Lübeck (O. Paulien)alle
14 – 14:30Mein erstes Teleskop (T. Schroeder)Kinder
15 – 15:30Deep Sky Objekte (M. Schroeder)Erwachsene
16 – 16:30Unser Sonnensystem (R. Orzekowsky-Schroeder)Kinder
17 – 17:30Das James Webb Space Telescope (R. Mazur)Erwachsene
18 – 18:30Die Monde in unserem Sonnensystem (R. Eilert)Kinder
19 – 19:30Der Mond – Unser Begleiter (V. Andres)alle
20 – 20:30Im Reich der Polarlichter (K. Henke)alle
Kurzvorträge im Musiksaal

Starts der Wasserrakete

10:45, 11:45, 12:45, 13:45, 14:45, 15:45, 16:45

Der Beitrag Bundesweiter Tag der Astronomie am 1. Oktober 2022 erschien zuerst auf Sternwarte Lübeck.

Unser Programm für Herbst und Winter 2022

Jetzt, wenn im Herbst die Tage wieder kürzer und die Nächte länger werden, werden so einige unter uns von einer gewissen Schwermut heimgesucht.

Wir vom ASL e.V. (Arbeitskreis Sternfreunde Lübeck e.V.) hingegen fiebern den langen Nächten bereits entgegen und freuen uns, Sie in Lübecks neuer Sternwarte begrüßen zu dürfen. Lassen Sie sich von unserem am 23. September startenden Vortragsprogramm mitreißen.

Unser Vortragsprogramm richtet sich an alle Interessierte!

Reisen Sie mit uns zum Beginn des Universums und erfahren Sie, wie sich die Elemente gebildet haben. Tauchen Sie in die Welt der sogenannten Deep Sky Objekte ein.  Gehen Sie mit uns den Fragen nach, wie das Leben auf unserem Planeten entstehen konnte, ob wir allein im Universum sind und wie wir extraterrestrisches Leben ausfindig machen könnten.

Wollen Sie wissen, wie die Zukunft des Universums aussehen könnte und wie wir Planeten in anderen Sternsystemen ausfindig machen können? Auch dann ist die Sternwarte Lübeck die richtige Adresse.

Wir freuen uns sehr, dass wir auch dieses Jahr, neben unseren Vereinsmitgliedern, wieder hochkarätige externe Gastredner für unser Vortragsprogramm gewinnen konnten.

Für Kinder zwischen 6 und 10 Jahren bieten wir auch dieses Jahr wieder die äußerst beliebte Reihe „Sternenabende für Kinder“ an.

Bei unserem kindgerechten Programm gehen wir den Fragen nach wie die Jahreszeiten entstehen, ob Sterne einen festen Wohnort haben, wie und wo wir das Milchstraßenband sehen können und was Lichtverschmutzung ist.

Wollen Sie im Anschluss an unseren Vorträgen das Gehörte auch betrachten? Dann bleiben Sie einfach vor Ort und nehmen an unseren öffentlichen Beobachtungsabenden Teil!

Es stehen diverse Teleskope verschiedenster Bauart ebenerdig zur Verfügung. Wer den Aufstieg in Lübecks neue Sternwartenkuppel nicht scheut, darf selbstverständlich auch einen Blick durch die großen Hauptinstrumente der Sternwarte riskieren. Zudem haben wir den Schwung der neuen Örtlichkeiten aufgenommen und in weiteres modernes Equipment investiert. Via Video-Astronomie (auch EAA) können wir Ihnen die Schönheit des Universums auch in Farbe präsentieren und das fast in Fotoqualität.

Auch die Beobachtungsabende richten sich an alle Interessierte und können unabhängig vom Vortragsprogramm besucht werden. Bringen Sie auch gerne auch Ihre eigenen Teleskope und/oder jegliche Fragen rund um das Thema Astronomie mit. Wir stehen Ihnen mit Rat und Tat zur Seite.

Die Beobachtungsabende sind generell kostenlos, bei jedem der kann und mag freuen wir uns aber über eine kleine Spende. Preise und Termine für unser Vortragsprogramm entnehmen Sie bitte unserem Veranstaltungskalender.

Wir freuen uns darauf Sie bald & häufig begrüßen zu dürfen!

Ihre Sternwarte Lübeck

Der Beitrag Unser Programm für Herbst und Winter 2022 erschien zuerst auf Sternwarte Lübeck.

Totale Mondfinsternis am 16.05.2022

Am Morgen des 16.05.2022 (Montag) kommt es zu einer totalen Mondfinsternis, die von Lübeck aus teilweise sichtbar ist. Der Mond taucht um 3:31 Uhr (MESZ) in den Halbschatten der Erde ein. Um 4:28 Uhr tritt er dann in den Kernschatten der Erde ein und geht bereits um 5:16 Uhr (MESZ), nur wenige Minuten vor Erreichen der Totalität um 5:29 Uhr (MESZ), unter.

Auch wenn die Totalität nicht beobachtbar sein wird, lohnt sich ein Blick auf den Mond, der fast vollständig in den Kernschatten der Erde getaucht hinterm Horizont verschwindet. Aufgrund der Brechungseffekte unserer Atmosphäre ist ein interessantes Farbenspiel in blassen Rot- bzw. Orangetönen möglich.

Zur Beobachtung wird neben einem möglichst wolkenfreien Himmel auch eine, am besten bis zum Horizont freie Sicht nach Westen benötigt. Wer sich nicht nur auf seine bloßen Augen verlassen möchte, nimmt idealerweise ein Fernglas zur Hand.

Die Sternwarte wird zur Mondfinsternis nicht geöffnet sein.

Der genaue Zeitplan der Finsternis:

EreignisZeit (MESZ)Höhe über Horizont
Eintritt in den Halbschatten3:31Uhr10°
Eintritt in den Kernschatten4:28Uhr4,6°
Untergang des Mondes5:16Uhr/
Beginn der Totalität5:29Uhrunbeobachtbar
Mitte der Finsternis6:12Uhrunbeobachtbar
Ende der Totalität6:54Uhrunbeobachtbar
Austritt aus dem Kernschatten7:56Uhrunbeobachtbar
Austritt aus dem Halbschatten8:52Uhrunbeobachtbar

Der Lauf des Mondes von links nach rechts (Angaben in MESZ)

Der Beitrag Totale Mondfinsternis am 16.05.2022 erschien zuerst auf Sternwarte Lübeck.

Abendsichtbarkeit des Merkur

Seit dem 15. April 2022 bestehen wieder gute Chancen, den sonnennächsten Planeten unseres Sternsystems tief am Westhorizont zu sehen. Der Merkur folgt der Sonne und wird etwa eine halbe Stunde nach ihrem Untergang sichtbar. Seine Abendsichtbarkeit wird sich bis in die ersten Maitage hinein erstrecken. Die beste Sichtbarkeit wird jedoch vom 20.04 bis zum 25.04. erreicht. Der kleine Planet verliert zunehmend an Helligkeit. Am 15.04 betrug sie in unseren Breiten noch etwa -1,10 m und verringert sich bis zum 20.05.  weiter auf ca. -0,64 m. Am 30.04. wird die Helligkeit voraussichtlich nur noch 0,58 m betragen.1

Das geübte Auge sollte den Innersten aller Planeten zumindest in der Zeit vom 20.04. bis zum 25.04. mühelos entdecken können. Darüber hinaus ist ein Fernglas äußerst hilfreich.

Informationen zum Merkur

Der geringste Abstand zur Sonne, das Perihel, beträgt lediglich 46 Mio km. Der weiteste Abstand zur Sonne, das Aphel, beträgt 69,8 Mio km. Mit seinem Durchmesser von ca. 4880km ist Merkur kleiner als Ganymed und Titan, die beiden größten Monde innerhalb unseres Sonnensystems. Der Merkur ist nicht wie unser Mond rotationsgebunden, das heißt, dass dem umkreisten Körper immer dieselbe Seite zugewandt ist, sondern er weist zur Sonne eine sogenannte gebrochene gebundene Rotation im Verhältnis 2:3 auf. Nach zwei vollständigen Sonnenumläufen hat er sich dreimal um die eigene Achse gedreht. Auf der sonnenzugewandten Seite herrschen Temperaturen bis zu 467 °C. Auf der sonnenabgewandten Seite herrschen dagegen eisige bis zu -180 °C.2

Der Merkur (NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington)

Auffallend ist die im Verhältnis zum recht kleinen Durchmesser hohe Dichte von etwa 5300 kg/m3, die den Merkur neben seiner stark exzentrischen Bahn und seiner hohen Umlaufgeschwindigkeit zum Sonderling in unserem Sonnensystem machen. In der Regel steigt die Dichte unserer Gesteinsplaneten mit zunehmendem Durchmesser. Die Dichte des Merkurs ist jedoch ähnlich hoch wie die der wesentlich größeren Erde. Warum sich das Durchmesser-Dichte-Verhältnis nicht in den annährend linearen Verlauf der restlichen Gesteinsplaneten einfügt, wollen die ESA und die JAXA (japanische Weltraumbehörde) mit ihrer BepiColumbo Mission herausfinden.

Zwar ist der Merkur bereits bei den Sumerern bekannt (3000 Jahre v. u. Z.), jedoch ist er der am wenigsten erforschte Planet. Die erdgebundene Beobachtung ist aufgrund seiner Horizontnähe sehr schwierig. Den Weltraumteleskopen macht die Nähe zur Sonne zu schaffen.

Missionen mit Sonden sind ebenfalls aufgrund der Nähe zur Sonne äußerst anspruchsvoll. Die Gravitationskraft sowie die starke Strahlung der Sonne bedeuten enorme Herausforderungen für die Technik. Zudem müssen aufgrund des hohen Bahndrehimpulses viele komplexe Bahn- und Bremsmanöver durchgeführt werden, um ausreichend Geschwindigkeit auf dem Weg ins Innere des Sonnensystems abzubauen.

Bis jetzt haben nur drei Sonden den Merkur besucht:

  • Messenger (NASA), gestartet 3. August 2004 (ab 17. März 2011 im Orbit, 30. April 2015 stürzte die Sonde geplant auf die Oberfläche)
  • BepiColumbo (ESA; JAXA), gestartet 20. Oktober 2018 (Einschwenken in einen Orbit geplant für den 5. Dezember 2025)
Quellen
  1. KOSMOS Himmels-Jahr 2022, ISBN 978-3-440-17083-0, Seite 98 (Helligkeiten aus Stellarium für den Standort Lübeck entnommen)
  2. DLR Institut für Planetenforschung

Der Beitrag Abendsichtbarkeit des Merkur erschien zuerst auf Sternwarte Lübeck.

Das Sternbild Vela – Die Segel

Herkunft – Mythologie – Beobachtungshinweise

zusammengestellt von E.-Günter Bröckels

1 Der Name

Das Sternbild Vela ist ein neuzeitliches Sternbild mit antiken Wurzeln. Es gehörte ursprünglich zu dem größten Sternbild des Südens, der Argo Navis oder dem Schiff der Argonauten. Hierzu gehörten auch die heutigen Sternbilder Carina = Schiffskiel, Puppis = Achterschiff und Pyxis = Schiffskompass. Der Schiffskompass liegt in einem Bereich, der früher als der Mast des Schiffes (Malus) mit dem Mastkorb angesehen wurde. Zu antiken Zeiten wurde auch vom Mastkorb aus die Navigation unterstützt.

Das Sternbild Argo Navis belegte am Himmel eine Fläche von mehr als 1670 Quadratgrad bei einer Ausdehnung in Rektaszension von 06h02m0s bis 11h20m37s und in Deklination von -75°41´02“ bis -11°15´08“. In der Antike war das Sternbild nur südlich des 32sten Breitengrades in seiner gesamten Größe zu beobachten, das entspricht der afrikanischen Mittelmeerküste, dem alten Palästina, dem antiken Mesopotamien sowie dem antiken Persien oberhalb des Persischen Golfs. Wäre dieses Sternbild noch heute anerkannt, wäre es größer als Hydra.

Argo Navis war griechischen Beobachtern seit langem bekannt, von denen angenommen wird, dass sie dieses Sternbild um 1000 v. Chr. aus der ägyptischen Mythologie und Sternkunde übernommen haben. Zum Beispiel identifizierte Plutarch Argo mit der ägyptischen Konstellation, die das “Boot des Osiris” genannt wurde. Obwohl einige Wissenschaftler einen sumerischen Ursprung zum Gilgamesch-Epos theoretisierten, wird diese Hypothese abgelehnt, da es keine schriftlichen Beweise dafür gibt, dass die Sumerer oder andere mesopotamische Kulturen diese Sterne zu Konstellationen zusammengefasst haben. Einige Zeit später wurde die Konstellation speziell mit dem antiken griechischen Mythos von Iason und den Argonauten identifiziert.

Iason, Thronerbe von Iolkos, wird von seinem Großvater ausgesandt, das Goldene Vlies aus Kolchis von König Aietes zurück zu holen. Hierzu baut Iason mit Argos ein fünfzigruderiges Schiff, die Argo. Athene selbst fügt diesem Schiff ein sprechendes Holzstück aus der Eiche des Orakels von Dodona ein. Iason versammelt alle bedeutenden griechischen Helden um sich und besteht mit ihnen, den Argonauten, vielfältige Abenteuer. In Kolchis verweigert Aietes die Herausgabe des Goldenen Vlies und stellt Iason zur Bedingung mehrere unlösbare Aufgaben. Medeia, die Tochter des Aietes, die mit Zauberkünsten sehr vertraut ist, verliebt sich in Iason, hilft ihm scheinbar Unmögliches zu vollbringen und fährt mit ihm, nach dem Raub des Goldenen Vlieses und nach mehreren mit der Argo überstandenen Abenteuern, nach Iolkos.

Eigenartigerweise wurde das Schiff immer, selbst auf antiken Abbildungen ohne Bug und mit dem Heck voraus, in Richtung der Wanderung der Sterne über den Nachthimmel, dargestellt. Entweder ließen die alten Kartographen den Bug in einer Wolke oder zwischen den Symplegaden verschwinden.  Schon ein Fragment des Arat, ein griechischer Historiker im dritten Jahrhundert lebend, beschrieb sein scheinbar rückwärtiges Fortschreiten entlang des Nachthimmels, „Sternforward Argo von dem Canis Major Schwanz gezogen wird, denn sie kein gewöhnlicher Kurs ist, aber rückwärts gedreht kommt sie … “. In seinem Almagest beschrieb Claudius Ptolemäus Argo Navis als den Teil der Milchstraße zwischen Canis Major und Centaurus besetzend; und er benannte einzelne Sterne nach solchen Details wie das “kleine Schild”, das “Steuerruder” oder den “Masthalter” und umfassend das “Sternornament”, das sich bis in das 19. Jahrhundert in kartographischen Darstellungen in himmlischen Atlanten fortsetzte. Die Sterne Miaplacidus und Canopus bildeten den Schiffsboden. Im Coelum Stellarum Christianum von Julius Schiller wurde es umgedeutet zur Arche Noah.

Bild 01: Sternbild Argo Navis nach J. Hevelius 1690
Bild 02: Sternbild Argo im Jahr 1922

In der neueren Zeit wurde das Sternbild Argo Navis aufgrund seiner enormen Größe für wissenschaftliche Zwecke als unhandlich angesehen. Schon 1763 veröffentlichte der französische Astronom Nicolas Louis de Lacaille in seinem Coelum Australe Stelliferum, dass in Argo Navis mit dem bloßen Auge mehr als hundertsechzig Sterne deutlich sichtbar  waren und löste die Konstellation auf. Er bezeichnete die neuen Abschnitte als „Argus in Carina“, „Argus in Puppi“  und „Argus in Velis“. Lacaille ersetzte die Bezeichnungen von Bayer durch neue, die den stellaren Größen näher kamen, benutzte jedoch nur eine einzige griechische Buchstabenfolge; Carina erhielt z. B. α, β und ε, Vela γ und δ, Puppis ζ und so weiter, wobei er Pyxis scheinbar vergessen oder sogar absichtlich außer Beachtung gelassen hat.
Die endgültige Auflösung und Abschaffung von Argo Navis wurde von Sir John Herschel 1841 und 1844 vorgeschlagen, aber die alte Konstellation blieb parallel zu ihren von Lacaille eingeführten Bestandteilen bis ins 20. Jahrhundert im Gebrauch. Im Jahr 1922 erhielt sie zusammen mit den anderen Konstellationen eine dreibuchstabige Abkürzung: Arg. Als die IAU im Jahr 1930 die 88 modernen Konstellationen definierte und Carina, Puppis, Vela und Pyxis formell einführte, wurde die alte Konstellation Schiff Argo endgültig gestrichen. Somit ist  das Schiff Argo das einzige Sternbild der 48 von Ptolemäus in seinem Almagest aufgelisteten Konstellationen, welches offiziell nicht mehr als  zusammengehörig anerkannt ist.

In den POLARIS-Ausgaben 22 und 23 habe ich die Sternbilder Carina und Puppis entsprechend meinen damaligen noch recht bescheidenen Möglichkeiten beschrieben. Hier folgt nun der dritte Teil der alten Argo, die Segel. Die lateinische Bezeichnung „Vela“ steht für die Mehrzahl.

2 Das Sternbild

Vela     Genitiv: Velorum     Abk.: Vel     dt.: Segel (die)

Dieses ausgedehnte Sternbild erstreckt sich nördlich von Carina am Südhimmel in RA von 08h03m27s bis 11h05m50s und in Dec von -57°10´28“ bis auf -37°09´36“ und hat dabei einen Flächeninhalt von 500 Quadratgrad. Es ist vom südlichen Mitteleuropa und Südeuropa lediglich der nördliche Teil dieses Sternbildes sichtbar. Erst ab 33° nördlicher Breite südwärts ist es vollständig zu sehen. Seine Nachbarsternbilder sind von Nord im Uhrzeigersinn Luftpumpe, Schiffskompass, Achterdeck, Schiffskiel und Zentaur. Durch das Sternbild zieht sich das sternreiche Band der Milchstraße. Daher findet man in den Segeln mehrere offene Sternhaufen, einen Kugelsternhaufen und einen Planetarischen Nebel. Vier seiner Sterne sind auffallend hell. Die Sterne δ und κ Velorum zusammen mit ι und ε Carinae werden manchmal mit dem Kreuz des Südens verwechselt. Diese Sterngruppe wird daher auch als „Falsches Kreuz des Südens“ bezeichnet. Das falsche Kreuz ist größer und der rechte Balkenstern hängt, während er beim echten Kreuz hoch steht.

Aus der Sternbildregion Vela-Puppis ist der vom 1. bis 15. Dezember auftretende Meteorstrom der Puppiden-Veliden mit einem Maximum um den 7. Dezember bekannt. Der Radiant liegt bei RA 08:12 / Dec -45°. Die Zenithal-Hourly-Rate liegt bei 10 und die Geschwindigkeit bei 40 km/s.

Bild 03: Das Sternbild Vela – Segel

2.1 Die Sterne

γ Vel ist mit einer Gesamthelligkeit von 1m8 der hellste Stern in den Segeln mit dem Eigennamen Sulhail al Muhlif. Er ist ein etwa 1000 Lichtjahre entferntes Mehrfachsystem auf der Position α 08h09m30s / δ -47°20´. Die Komponenten A (auch γ2 Velorum) und B (auch γ1 Velorum) sind bei einem Winkelabstand von 41,2“ schon im Feldstecher leicht zu trennen. A ist seinerseits ein enger Doppelstern, der den hellsten bekannten „Wolf-Rayet-Stern“ enthält. Dieser hier ist ein 30.000 K heißer Riese mit 15tausendfacher Sonnenleuchtkraft, einer sehr schnell expandierenden Gashülle und einer Umlaufperiode von 78 ½ Tagen. Eine weitere Komponente mit der Bezeichnung P wurde durch Beobachtungen im Infraroten mittels adaptiver Optik in einem Abstand von 4,7″ bei einem Positionswinkel von 13° entdeckt. Sie ist wahrscheinlich ein physischer Begleiter und ihre Daten passen zu einem K4-Stern leicht oberhalb der Hauptreihe. Die Komponente B, γ1 Velorum, wurde mit B1 IV klassifiziert und hat eine Helligkeit von 4m2. Sie wurde mittels Speckle-Interferometrie am Kitt Peak und Cerro Tololo aufgelöst als Doppelstern mit den Komponenten Ba und Bb.

δ Vel ist ein Vierfachsternsystem mit dem Eigennamen Koo She in 80 Lichtjahren Entfernung. Es besteht aus den Paaren δ Velorum A und B sowie δ Velorum C und D. Infolge der Präzessionsbewegung der Erde wird δ Velorum in 7.000 Jahren den südlichen Polarstern darstellen. Der hellste der vier Sterne, Delta Velorum A, ist ein weißer Hauptreihenstern mit einer Helligkeit von 1m9. Sein Begleiter Delta Velorum B hat eine Helligkeit von ca. 5m0 und liegt von Komponente A 2,6 Bogensekunden entfernt. Das zweite Doppelsystem ist 69 Bogensekunden entfernt. Es besteht aus dem Stern 11. Größe Delta Velorum C und dem Stern 13. Größe Delta Velorum D, die ihrerseits einen Abstand von 6 Bogensekunden voneinander haben.

κ Vel ist ein spektroskopischer Doppelstern in 540 Lichtjahren Entfernung. Die 2m7 helle Hauptkomponente wird in 116,65 Tagen umkreist. Der arabische Name Markab bedeutet „Fahrzeug“. Den gleichen Namen tragen die Sterne α Pegasi und k Puppis.

µ Vel ist ein Doppelsternsystem bestehend aus einem 2m7 hellen gelben Riesen mit  den Eigennamen Alherem oder Peregrini und einem sonnenähnlichen gelben Zwergstern.

λ Vel ist ein 570 Lichtjahre entfernter veränderlicher Stern, der seine Helligkeit ohne erkennbare Periodizität von 2m14 nach 2m3 verändert. Er ist ein orangefarbener Riesenstern mit dem 200fachen Durchmesser und der 10.000fachen Leuchtkraft unserer Sonne. Seine Oberflächentemperatur beträgt etwa 4.000 Kelvin. Er trägt verschiedene Namen, nämlich Suhail, Alsuhail und Suhail al Wazn.

φ Vel hat den Eigennamen Tseen Ke, ist 3m5 hell, gehört der Spektralklasse B5Ib an und befindet sich auf der Position α 09h56m51,7s / δ -54°34´4,1“ in 1590 Lichtjahren Entfernung.

2.2 Deep Sky Objekte

NGC 3132 ist ein 9m2 heller planetarischer Nebel, der wegen seines Aussehens auch als südlicher Ringnebel oder Eight-Burst-Nebula bezeichnet wird. Er hat eine Ausdehnung von derzeit 0,5 Lichtjahren, wird von dem 9m9 hellen Zentralstern HD 87892 zum Leuchten angeregt und befindet sich auf der Position RA 10h07m02s / Dec -40°26´12“ in 2000 (5000) Lichtjahren Entfernung nahe der Grenze zum Sternbild Antlia (Luftpumpe). In seinem Inneren soll sich ein Doppelstern befinden. Er wurde am 2. März 1835 von John Herschel entdeckt.

Bild 04: NGC 3132 Der südliche Ringnebel – HST

NGC 3201 ist die Bezeichnung eines Kugelsternhaufens. Dieser hat einen Durchmesser von 18,2′, eine scheinbare Helligkeit von 6m8  und eine integrierte Spektralklasse F 6. Er steht auf der Position RA 10h17m36,8s / Dec -46°24´40,4” und sein Licht braucht bis zu uns 16.300 Jahre. Seine Randbereiche können bereits mit einem mittleren Amateurteleskop in Einzelsterne aufgelöst werden. James Dunlop entdeckte diesen Kugelsternhaufen am 28. Mai 1826.

Bild 05: NGC 3201 Kugelsternhaufen  – ESO-MPG 2,2m Teleskop

IC 2391,  ein galaktischer offener Sternhaufen, auch als Omicron Velorum Cluster bekannt, ist etwa 500 Lichtjahre von der Erde entfernt und hat einen Durchmesser von 9 Lichtjahren entsprechend 50´. Das Objekt hat eine scheinbare Helligkeit von 2m5 und beinhaltet über 30 Sterne. IC 2391 kann mit bloßem Auge gesehen werden. Der Sternhaufen ist mit rund 50 Millionen Jahren etwa so alt wie der Sternhaufen IC 2602. Die Position von IC2391 ist RA  08h40m32s / Dec -53°02´0“. Er steht in der Nähe des Sterns ο Velorum. Er wurde 964 von dem persischen Astronomen Abd ar-Rahman as-Sufi erstmals beschrieben. IC2391 wurde außerdem 1751von Nicolas Louis de Lacaille von Südafrika aus gefunden und 1752 als Lac II 5 katalogisiert. In einem Prismenfernglas bietet er einen sehr schönen Anblick.

Bild 06: IC 2391 offener Sternhaufen in Vela –  Roberto Mura

IC 2395 ist ein offener Sternhaufen in 3.000 Lichtjahren Entfernung. Aufgrund seiner größeren Entfernung ist er nicht so auffällig wie IC 2391, ist aber ein interessantes Objekt für kleinere Teleskope. Er befindet sich auf der Position RA 08h42m31s / Dec -48°06´0“ und hat eine Winkelausdehnung von 8´ entsprechend 15 – 26 Lichtjahren. Seine 45 Sterne sind zwischen 6 und 18 Millionen Jahre alt und erzeugen eine Haufenhelligkeit von 4m6. Der hellste Stern ist ein 5m53 heller B0-Typ. Lacaille entdeckte diesen offenen Sternhaufen am 17. Februar 1752.

IC 2602 ist ein offener Sternhaufen vom Typ II3m. Er hat eine scheinbare Helligkeit von 1m9 und einen Durchmesser von 100 Bogenminuten. Er ist rund 480 Lichtjahre vom Sonnensystem entfernt, hat einen Durchmesser von etwa 10 Lichtjahren und beinhaltet ca. 60 obere Hauptreihensterne. Das Alter des Haufens wird auf 50 Millionen Jahre geschätzt. Seine Position ist RA 10h42m56,5s / Dec -64°23´39“. Dieser Sternenhaufen wird wegen seiner Ähnlichkeit mit den Plejaden im Stier auch unter der Bezeichnung „Südliche Plejaden“ geführt. Entdeckt wurde das Objekt 1751 von Nicolas-Louis de Lacaille.

Bild 07: IC 2602 offener Sternhaufen  Südliche Plejaden – Roberto Mura

NGC2547 ist ein offener Sternhaufen mit noch sehr jungen Mitgliedern. Seine Position ist: RA 08h10m12s / Dec -49°12´0“ nahe der östlichen Grenze zum Sternbild Puppis. Er hat bei etwa 40 Mitgliedssternen eine Winkelausdehnung von 209 Bogensekunden und sein Gesamtlicht von 4m7 braucht 1960 Jahre bis zu uns. N. L. de Lacaille entdeckte ihn 1751/1752 während seines Aufenthaltes am Kap der guten Hoffnung.

Bild 08: Großfeldaufnahme NGC 2547 und Umgebung – MPG/ESO

SNR Vela ist die Bezeichnung für die filamentigen Nebelreste einer Supernova, die sich vor 11.000-12.300 Jahren in 815 Lichtjahren Entfernung im Sternbild Vela ereignet hat. Aus dem Vorgängerstern ist durch die Supernova zweierlei entstanden: Zum Einen der Vela-Pulsar mit der Bezeichnung PSR B0833-45, ein Neutronenstern von nur 10-15 Kilometer Durchmesser und einer Rotationsperiode von 11mal pro Sekunde. Er wurde von Astronomen der University of Sydney im Jahr 1968 als erster direkter Beweis dafür beobachtet, dass Supernovae  Neutronensterne bilden. Zum Anderen bildet das von der Supernova in den Raum geschleuderte Gas den Vela-Nebel, der eine Ausdehnung von 8 Winkelgrad oder rund 100 Lichtjahren hat. Zu dem Supernovaüberrest gehört auch der Bleistiftnebel mit der eigenen Bezeichnung NGC 2736 (Pencil-Nebula). Das Zentrum befindet sich in RA bei 08h35m20,6s und in Dec bei -45°10´35,2“ und das ganze Objekt hat eine scheinbare Flächenhelligkeit von 12m0.

Der Supernovaüberrest überlappt sich scheinbar mit dem von Puppis A, welcher aber vierfach weiter entfernt ist. Tatsächlich ist der Vela SNR einer der Erde am nächsten gelegenen Supernovaüberreste –und stellt möglicherweise auch die 1998 entdeckte Röntgenquelle RX J0852.0-4622 dar, die sich wie Puppis A mit dem Erscheinungsbild des Vela-Supernovaüberrestes überlappt. Der Vela-SNR gehört zu den hellsten Himmelserscheinungen im Röntgenbereich.

2.3 Sonstiges

Literaturhinweise

  • Die großen Sternbilder                                            I. Ridpath
  • Lexikon der griech. u. röm. Mythologie          H. Hunger
  • Internet z.B. Wikipedia                                            div. Autoren
  • Internet z.B. Astrowiki                                             div. Autoren
  • POLARIS 22 und 23                                                   E. – G. Bröckels
  • Astronomical Journal 137-3358                        B. D. Mason et al.
  • Sternbilder von A bis Z                                             A. Rükl

Quellenangaben der Abbildungen

  • Bild 01: from Wikimedia Commons, the free media repository,  gemeinfrei aus Firmamentum Sobiescianum sive Uranographia 1690 Johannes Hevelius
  • Bild 02: created by Torsten Bronger nach de Lacaille Puppis, Vela, Carina, Pyxis 2000 07 07; geändert 2014 E.-Günter Bröckels (Sternbildgrenzen rot eingefärbt)
  • Bild 03: from Wikimedia Commons, the free media repository; created by Torsten Bronger 2003; geändert 2014 E.-Günter Bröckels (Sternbildgrenzen rot eingefärbt;  grüne Hilfslinien erweitert; „Falsches Kreuz“ rot eingezeichnet und beschriftet; nachfolgende Objekte positioniert und beschriftet: NGC´s 2547, 2736, 3132, 3201, 3228;  IC 2395;  PSR B0833-45; SNR (roter Ring))
  • Bild 04: Wikiwand  Hubble Heritage Team (STScl/AURA/NASA/ESA 1998)  public domain
  • Bild 05: Wikipedia cretiv commons.org/licenses/by/4.0 ESO-https://www.eso.org/public/images/ngc3201/
  • Bild 06: From Wikimedia Commons, the free media repository; the copyright holder of this work, Roberto Mura 07/2007, release this work into the public  domain. This applies worldwide.
  • Bild 07: Roberto Mura 02/07/2007 in Wikipedia auf Italienisch – Übertragen aus it. wikipedia nach Commons durch Jacopo Werther,  gemeinfrei
  • Bild 08: ESO Wide Field Imager am MPG/ESO 2,2m Teleskope La Silla Chile; https://es.wiktionary.org/wiki/ Archivo:Wide-field_view_of_the_open_star cluster_NGC_2547.jpg
  • Bild 09: Bill Blair´s Vela Supernova Remnant Page,  Foto by Royal Observatory´s Super COSMOS H-alpha Survey project Vela SNR
  • Bild 10: Bill Blair´s Vela Supernova Remnant Page,  Foto by Bert Van Dokelaar, geändert 2017 E.-Günter Bröckels (rechts gedreht 90°)

Die Serie der Sternbildbeschreibungen wird fortgesetzt.

Der Beitrag Das Sternbild Vela – Die Segel erschien zuerst auf Sternwarte Lübeck.